Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 9, 2026
-
The flexibility and scale of networks achievable by modern cloud computer architectures, particularly Kubernetes (K8s)-based applications, are rivaled only by the resulting complexity required to operate at scale in a responsive manner. This leaves applications vulnerable toEconomic Denial of Sustainability(EDoS) attacks, designed to force service withdrawal via draining the target of the financial means to support the application. With the public cloud market projected to reach three quarters of a trillion dollars USD by the end of 2025, this is a major consideration. In this paper, we develop a theoretical model to reason about EDoS attacks on K8s. We determine scaling thresholds based on Markov Decision Processes (MDPs), incorporating costs of operating K8s replicas, Service Level Agreement violations, and minimum service charges imposed by billing structures. We build on top of the MDP model a Stackelberg game, determining the circumstances under which an adversary injects traffic. The optimal policy returned by the MDP is generally of hysteresis-type, but not always. Specifically, through numerical evaluations we show examples where charges on an hourly resolution eliminate incentives for scaling down resources. Furthermore, through the use of experiments on a realistic K8s cluster, we show that, depending on the billing model employed and the customer workload characteristics, an EDoS attack can result in a 4× increase in traffic intensity resulting in a 3.6× decrease in efficiency. Interestingly, increasing the intensity of an attack may render it less efficient per unit of attack power. Finally, we demonstrate a proof-of-concept for a countermeasure involving custom scaling metrics where autoscaling decisions are randomized. We demonstrate that per-minute utilization charges are reduced compared to standard scaling, with negligible drops in requests.more » « lessFree, publicly-accessible full text available May 27, 2026
-
Free, publicly-accessible full text available December 1, 2025
-
Synchronization of transaction pools (mempools) has shown potential for improving the performance and block propagation delay of state-of-the-art blockchains. Indeed, various heuristics have been proposed in the literature to incorporate early exchanges of unconfirmed transactions into the block propagation protocol. In this work, we take a different approach, maintaining transaction synchronization externally (and independently) of the block propagation channel. In the process, we formalize the synchronization problem within a graph theoretic framework and introduce a novel algorithm (SREP - Set Reconciliation-Enhanced Propagation) with quantifiable guarantees. We analyze the algorithm’s performance for various realistic network topologies, and show that it converges on static connected graphs in a time bounded by the diameter of the graph. In graphs with dynamic edges, SREP converges in an expected time that is linear in the number of nodes. We confirm our analytical findings through extensive simulations that include comparisons with MempoolSync, a recent approach from the literature. Our simulations show that SREP incurs reasonable bandwidth overhead and scales gracefully with the size of the network (unlike MempoolSync).more » « less
-
Shared/buy-in computing systems offer users the option to select between buy-in and shared services. In such systems, idle buy-in resources are made available to other users for sharing. With strategic users, resource purchase and allocation in such systems can be cast as a non-cooperative game, whose corresponding Nash equilibrium does not necessarily result in the optimal social cost. In this study, we first derive the optimal social cost of the game in closed form, by casting it as a convex optimization problem and establishing related properties. Next, we derive a closed-form expression for the social cost at the Nash equilibrium, and show that it can be computed in linear time. We further show that the strategy profiles of users at the optimum and the Nash equilibrium are directly proportional. We measure the inefficiency of the Nash equilibrium through the price of anarchy, and show that it can be quite large in certain cases, e.g., when the operating expense ratio is low or when the distribution of user workloads is relatively homogeneous. To improve the efficiency of the system, we propose and analyze two subsidy policies, which are shown to converge using best-response dynamics.more » « less
An official website of the United States government
